
1. Introduction
The northeast Pacific Coastal Temperate Rainforest (NPCTR) is a region of dramatic elevation gradients includ-
ing steep and subdued terrain and the largest remaining icefields in North America (Bidlack et al., 2021; O’Neel 
et al., 2015). Ecosystems within the NPCTR are characterized by slow and incomplete decomposition of organic 
carbon (OC), resulting in one of the densest soil carbon stocks on Earth (228 ± 111 Mg ha −1; McNicol et al., 2019). 
The regional proximity to frontal storms from the Gulf of Alaska leads to extreme rates of precipitation (>6 m yr −1 
at high elevations) and an annual land-to-ocean freshwater flux of roughly 1,300 km 3 (runoff = 0.9 m yr −1; Hill 
et al., 2015; Morrison et al., 2012). This freshwater discharge from the 1.4 M km 2 NPCTR drainage basin is 60% 
greater than that from the 3.4 M km 2 Mississippi River (Dai & Trenberth, 2002), and it provides an important 
vector for lateral transport of dissolved organic carbon (DOC) across the terrestrial-marine interface.

Abstract The northeast Pacific Coastal Temperate Rainforest (NPCTR) extending from southeast Alaska 
to northern California is characterized by high precipitation and large stores of recently fixed biological 
carbon. We show that 3.5 Tg-C yr −1 as dissolved organic carbon (DOC) is exported from the NPCTR drainage 
basin to the coastal ocean. More than 56% of this riverine DOC flux originates from thousands of small 
(mean = 118 km 2), coastal watersheds comprising 22% of the NPCTR drainage basin. The average DOC yield 
from NPCTR coastal watersheds (6.20 g-C m −2 yr −1) exceeds that from Earth's tropical regions by roughly a 
factor of three. The highest yields occur in small, coastal watersheds in the central NPCTR due to the balance 
of moderate temperature, high precipitation, and high soil organic carbon stocks. These findings indicate DOC 
export from NPCTR watersheds may play an important role in regional-scale heterotrophy within near-shore 
marine ecosystems in the northeast Pacific.

Plain Language Summary Carbon and water are dominant features within coastal temperate 
rainforests, which ring the Pacific coast of northeast America and Asia, the southern coast of Chile, and 
western New Zealand. The environmental conditions that support large stores of above ground forest biomass 
also facilitate the movement of organic carbon through soils and streams to coastal zones. Here we present the 
results of a large data synthesis to estimate the flux of dissolved organic carbon from the land to sea along the 
Northeast Pacific Coastal Temperate Rainforest region that extends from northern California through Southeast 
Alaska. We highlight that, although large rivers like the Fraser River in Canada and the Columbia River in the 
United States drain the majority of the region, the majority of the dissolved organic carbon entering coastal 
ecosystems originates from small, coastal watersheds, highlighting the direct connection in the carbon cycle 
between terrestrial and estuarine ecosystems within this region.
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•  More than 50% of the land-to-ocean 
DOC flux is derived from small 
(median = 44 km 2), coastal 
watersheds

•  Modeled watershed DOC yields peak 
in coastal British Columbia where 
climate and landcover combine to 
maximize terrestrial-aquatic DOC 
fluxes
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Quantifying the linked flows of water and DOC across coastal margins is crucial for understanding the flow of 
energy between terrestrial and estuarine ecosystems (Bauer et al., 2013; Hopkinson et al., 1998; Tank et al., 2012). 
Globally, small (<10,000 km 2) mountainous watersheds are disproportionately important sources of terrestrial 
materials to the ocean (Milliman & Syvitski, 1992). In the NPCTR, the combination of large soil organic carbon 
(OC) stocks and high runoff rates facilitates rapid transfer of DOC to the coastal zone and mixing within the 
dominant currents that drive water flow in the Northeast Pacific Ocean. This organic matter provides metabolic 
support for coastal environments along the Riverine Coastal Domain, a narrow strip of buoyancy-driven bound-
ary currents along western North America (Carmack et al., 2015).

Many small coastal watersheds in the northern and central NPCTR have extremely high yields of dissolved 
organic carbon (10–40 g-C m 2 yr −1; D’Amore et al., 2015; Oliver et al., 2017). However, there are few regional 
scale, data-driven estimates for riverine DOC fluxes from temperate rainforest ecosystems to coastal environ-
ments. The southeast Alaska drainage basin, which includes the northern portion of the NPCTR, has been esti-
mated to export ∼1 Tg-C yr −1 as DOC (Edwards et al., 2021; Stackpoole, Stets, et al., 2017). In contrast, the 
Amazon River exports about 27 Tg-C yr −1 as DOC from an area ∼50 times greater than the southeast Alaska 
drainage basin (Moreira-Turcq et al., 2003), illustrating that DOC yields from coastal temperate rainforest (CTR) 
ecosystems may be larger than those from some tropical rainforests. However, runoff and DOC concentrations 
vary dramatically among the diverse watersheds of the NPCTR drainage basin (Giesbrecht et al., 2022), hindering 
efforts to scale DOC fluxes across this region.

Here we present the first comprehensive estimate for the flux of DOC entering the northeast Pacific across the 
perhumid and seasonal domains of the NPCTR coastal margin. We compile a continuous transboundary riverine 
DOC data set to model long-term mean annual fluxes of DOC by watershed, explore the relative contributions of 
small coastal watersheds and larger continental river systems to the land-to-ocean flux of DOC within this C-rich 
ecoregion, and consider implications of this flow of DOC to downstream marine ecosystems.

2. Data and Methods
2.1. Watershed Characterization and DOC Data Compilation

Our study region extends from the Eel River watershed in northern California to the coastal watersheds of Glacier 
Bay National Park in southeast Alaska (Figure 1a). This region encompasses the perhumid NPCTR north of 
Vancouver Island, which receives substantial precipitation in every month of the year, as well as the seasonal 
NPCTR from Vancouver Island southward, which is characterized by an annual summer dry season. We used 
the watershed boundary data set produced by Gonzalez Arriola et al. (2018), which merges existing government 
data products including the USGS National Hydrography Data set, the U.S. Watershed Boundary Data set, and 
British Columbia Freshwater Atlas into seamless outlines with a consistent resolution (>∼20 km 2) across interna-
tional (AK–BC–WA) and state (WA–OR–CA) boundaries. We omitted (∼63,000) very small drainage polygons 
(<10 km 2), which were mostly tiny islets, together representing only 0.27% of the region. For each watershed, we 
used existing geospatial datasets to describe 17 watershed characteristics expected to control the watershed DOC 
yield (Table S1 in Supporting Information S1) in this region, including climate normals calculated from 1981 to 
2010 (see Giesbrecht et al., 2022 for details).

Streamwater DOC concentration data were compiled from federal, provincial, and state databases, unpublished 
data, and previously published estimates, resulting in an initial data set of 10,632 DOC measurements across 
560 sites. This data set was filtered to ensure that measurement location(s) closest to (but not within) the estuary 
were used when multiple sites were present in a watershed, and that minimum criteria for watershed DOC sample 
size (n ≥ 3) and seasonal distribution were met (see Text S1 in Supporting Information S1). Filtering resulted 
in a final data set of 3,706 DOC measurements across 116 watersheds, with 2,758 observations from 108 small 
coastal watersheds and 948 observations from eight continental watersheds (Data Set S1, Butman et al., 2023).

2.2. Estimates of Carbon Flux and Yield

Continental watersheds: The 10 continental watersheds in the study domain (Figure 1a) are gauged for discharge 
by federal agencies with DOC data available at the gauge site for 8 of 10 of the watersheds. In gauged water-
sheds, we used LOADEST (Runkel et al., 2004) to fit regression models for estimating annual fluxes (Tg yr −1) 
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at the most downstream gauge in each continental watershed (n = 3; Table S3 in Supporting Information S1). 
Gauged fluxes were extrapolated to the watershed outlet using proportional discharge (see below for description 
and Table S3 in Supporting Information S1 for calculations). Fluxes previously calculated for U.S.-terminating 
watersheds (n = 5; Edwards et al., 2021; Stets & Striegl, 2012) were used for extrapolation from gauge to outlet. 
For watersheds without DOC data (the Eel and Nass), fluxes were interpolated using the area-weighted flux from 
nearby watersheds (Table S3 in Supporting Information S1). Annual yields (g-C m −2 yr −1) were then calculated 
by dividing watershed outlet DOC fluxes by the total watershed area.

Coastal watersheds: Because most small, coastal watersheds in the NPCTR are not gauged, fluxes and yields 
were calculated for all coastal watersheds with screened DOC concentration data from the closest measurement 
site to the coast (n = 108, see above). For watersheds that did not have enough DOC and/or discharge data to 
use LOADEST (85 of 108 watersheds), DOC yields were calculated using mean monthly runoff (1981–2010) 
estimates generated from a modification of the distributed climate water balance model (DCWBM) (Moore 
et al., 2012; see Text S1 in Supporting Information S1). Mean monthly runoff at the coastal watershed outlet was 
generated for each NPCTR watershed as a composite of modeled and gauged discharge. Mean monthly DOC 
yields were calculated as the product of mean monthly DOC concentration data and modeled monthly runoff. In 
cases where DOC data were not available for all months, monthly yields were scaled to annual yields by multiply-
ing by the ratio of annual discharge to the sum of discharge during months for which DOC yields were computed. 
For the subset of coastal watersheds that met minimum LOADEST requirements (i.e., availability of gauged 
discharge data and a minimum of 12 DOC values; 23 of the 108 watersheds) and the 8 continental watersheds 
with DOC data, fluxes and yields were modeled via LOADEST as described above. A comparison of the two 
approaches confirmed similar results (Figure S3 in Supporting Information S1).

To extrapolate DOC yields to NPCTR coastal watersheds, we developed a model training data set comprised of 
LOADEST yields and calculated watershed yields, using LOADEST yields where both were available. We used 

Figure 1. Location and extent of the Northeast Pacific Coastal Temperate Rainforest (colored zones) in the context of the larger NPCTR drainage basin, which includes 
small coastal watersheds (thin black lines) and ten large continental watersheds (heavy black lines) used in this analysis (a). Range of modeled watershed carbon yields 
across the study region, which includes the S.E. Alaska, British Columbia, and Contiguous U.S. sub-regions (b).
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forward feature selection (FFS; Meyer et al., 2018) to identify the predictor subset that mini-
mized the model mean absolute error (MAE) during leave-one-out cross validation after step-
wise training of a Random Forest algorithm on all 17 watershed attribute predictors. An initial 
pair of, then single, predictors were added when they resulted in the lowest MAE, resulting in 
a final predictor set of two variables (Hargreaves reference evapotranspiration and percent of 
MAP as snow; Table S1 in Supporting Information S1) that was used to train a Random Forest 
model using all DOC yields calculated for coastal watersheds via the LOADEST and DCWBM 
methods described above. Final model predictions were corrected for regression-to-the-mean 
effects common to decision tree algorithms using a linear spline function between observed 
and predicted DOC (Zhang & Lu, 2012), and yields were calculated for all NPCTR coastal 
watersheds using the final corrected model. Overall error in the modeled flux was computed by 
scaling the model mean absolute error estimated during cross validation to the model domain 
(Warner et  al.,  2019). The methods used to calculate watershed DOC yields across the full 
study domain are shown in Figure S4 in Supporting Information S1, and further methodological 
details are in Text S1 in Supporting Information S1.

3. Results and Discussion
3.1. DOC Export From the NPCTR Drainage Basin

We estimate that the total riverine DOC flux from the NPCTR drainage basin is 
3.5 ± 0.92 Tg-C yr −1 (Table 1). This constitutes about 1.6% of the annual DOC flux from global 
rivers to the ocean and roughly 10% of the total DOC flux to the Pacific Ocean (Dai et al., 2012; 
Li et al., 2017). In the context of North America, the flux of DOC from the NPCTR drainage 
basin exceeds the DOC fluxes from the three largest watersheds on the continent: the Mississippi 
(1.7–2.8 Tg-C yr −1; Cai et al., 2015; Ren et al., 2016; Stackpoole, Stets, et al., 2017), Mackenzie 
(1.38 Tg-C yr −1, Holmes et al., 2012), and Yukon (1.47 Tg-C yr −1; Holmes et al., 2012) river 
basins. Moreover, land-to-ocean DOC loss from the NPCTR drainage basin equates to more 
than half of annual DOC export from the conterminous United States (6.3 Tg-C yr −1; Stets & 
Striegl, 2012) and more than 8% of the DOC flux from the entire North American continent 
(42.5 Tg-C yr −1; Li et al., 2019). Within North America, the NPCTR drainage basin serves as a 
hotspot of DOC production, the export of which is closely connected to the coastal ocean. Our 
findings further suggest that the role of coastal temperate rainforest ecosystems in continental 
scale land-to-ocean DOC fluxes warrants further examination in other CTR regions such as 
southern South America, New Zealand, and Japan.

Within the NPCTR drainage basin, the annual DOC flux is derived largely from coastal 
watersheds, with 1.97 ± 0.85 Tg (56%) of the DOC flux coming from roughly 2,700 small 
(median = 44 km 2) coastal watersheds that account for 22% of the NPCTR drainage basin area 
(Figure 2, Table 1). In contrast, only 1.57 ± 0.07 Tg (44%) of the DOC flux originates from 
the large continental watersheds that cross the Coast Mountains and account for the majority 
(78%) of the land area draining to the NPCTR coastal margin. The CTR zone within the NPCTR 
drainage basin, which includes abundant runoff from glaciers and icefields, thus serves as the 
primary driver of the land-to-ocean DOC flux in this region. Within the small watersheds of 
the CTR zone, the perhumid ecoregion, which is characterized by higher annual precipitation 
distributed evenly across the year, had a higher annual DOC flux (1.26 Tg) compared to the 
seasonal ecoregion (0.71 Tg), which experiences an extended summer (June–September) dry 
season (Waring & Franklin, 1979).

The spatial distribution of the riverine DOC flux from the NPCTR drainage basin is impor-
tant because the Alaska Coastal Current originates close to the Columbia River mouth and 
transports freshwater and solutes northward to the productive near-shore marine ecosystems 
of the Gulf of Alaska (Figure 1; Stabeno et al., 1995). On a regional basis, British Columbia 
in the geographic center of the NPCTR had the largest annual DOC flux (1.74 Tg C; Table 1), 
followed by the contiguous U.S. (1.04 Tg C; 62% from the Columbia River Basin), and the 
watersheds draining into coastal southeast Alaska (0.76 Tg C). Our annual DOC flux estimate Su
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for southeast Alaska and transboundary watersheds of the British Columbia/
Alaska panhandle is notably smaller than a recent estimate of 1.12 Tg yr −1 by 
Edwards et al. (2021), who modeled DOC concentration and streamflow at 
the watershed scale. Our more conservative estimate of NPCTR DOC flux 
may arise from our model underestimating the exceptionally high DOC yields 
from small, outer coast watersheds in the center of our study domain (e.g., 
Oliver et al., 2017; Figure S4 in Supporting Information S1) due to a paucity 
of training data within this region (Figure S5 in Supporting Information S1).

3.2. Regional DOC Yields

The range of magnitudes for our modeled watershed DOC yields 
(1–29 g-C m −2 yr −1; Table 1) agrees with measured DOC yields from our study 
region including the central coast of British Columbia (24–38 g-C m −2 yr −1; 
Oliver et  al.,  2017) and southeast Alaska (11–30  g-C  m −2  yr −1; D’Amore 
et  al.,  2015), as well as similar coastal temperate rainforest watersheds in 
Chile (Pérez-Rodríguez & Biester,  2022; 1–44  g-C  m −2  yr −1). Moreover, 
our yield estimate for southeast Alaska is consistent with recent modeled 
yields of DOC (6.2 g-C m −2 yr −1; Edwards et  al., 2021) and total organic 
carbon (dissolved + particulate OC; 12.7 g-C m −2 yr −1; Stackpoole, Stets, 
et al., 2017) for this region, given that particulate organic carbon (POC) can 
constitute more than 50% of the total riverine OC flux in the glacier-dominated 
watersheds found in the region (Bhatia et al., 2013; Hood et al., 2020).

The average DOC yield from the entire NPCTR drainage basin 
(2.4 g-C m −2 yr −1; Table 1) is higher than the average DOC yield from Earth's 
tropical latitudes (30°N–30°S) of 2.13 g-C m −2 yr −1 (Huang et al., 2012). The 

importance of small watersheds to this regional DOC flux is exemplified by the DOC yield from the NPCTR 
coastal watersheds (6.20 g-C m −2 yr −1), and particularly the perhumid CTR (7.30 g-C m −2 yr −1), exceeding that 
for the large continental river basins (1.23 g-C m −2 yr −1) by a factor of 5–6x. The DOC yield from the NPCTR 
coastal watersheds exceeds that for the boreal forest dominated landscapes of Finland (4.5 g-C m −2 yr −1; Räike 
et al., 2015) and Norway (3.0 g-C m −2 yr −1; de Wit et al., 2015) as well as the peatland-rich landscape of Great 
Britain (5.0 g-C m −2 yr −1; Williamson et al., 2021). Moreover, the highest DOC yields from outer-coast water-
sheds of the NPCTR (20–30 g-C m −2 yr −1; Figure 2) are within the lower end of the range of DOC yields from 
peat-dominated, high-standing tropical islands in southeast Asia (26–96 g-C m −2 yr −1; Baum et al., 2007; Moore 
et al., 2013; Wit et al., 2015), which have among the highest watershed DOC yields yet reported.

Within North America, the DOC yields we report for the NPCTR coastal watersheds are generally higher than 
those documented for watersheds in other ecoregions including agricultural (0.3–2.3 g-C m −2 yr −1; Royer & 
David, 2005), blackwater swamp (3.3–6.2 g-C m −2 yr −1; Avery et al., 2003; Leech et al., 2016), temperate forest 
(2–10  g-C  m −2  yr −1; Campbell et  al.,  2000; Huntington & Aiken,  2013). Overall, our findings indicate that 
CTR ecosystems are a regional and global hotspot of DOC export to the ocean (Edwards et al., 2021; Oliver 
et al., 2017; Stackpoole, Butman, et al., 2017). Further, our findings underscore the importance of small coastal 
watersheds as drivers of riverine material fluxes to the ocean (Destouni et al., 2008; Milliman & Syvitski, 1992; 
Warrick et al., 2015).

3.3. Drivers of DOC Export From NPCTR Ecosystems

Our final Random Forest model for watershed DOC yields included two features: the percent of precipitation 
received as snow (PAS) and reference evapotranspiration (Eref; Table S1 in Supporting Information S1), with the 
highest yields of DOC occurring in watersheds with low PAS and Eref. (Figure S6 in Supporting Information S1). 
In the coastal mountains of the NPCTR, PAS acts as a proxy for topographic effects such as slope and elevation 
(Giesbrecht et al., 2022), both of which are negatively correlated wetland coverage and soil organic carbon stocks 
at the watershed scale (D’Amore et al., 2016; Sobek et al., 2007). This is consistent with the idea that low eleva-
tion and low relief watersheds within the NPCTR harbor abundant peatlands and forested wetlands that have tight 

Figure 2. Cumulative proportion of the regional DOC flux versus cumulative 
proportional watershed area. Blue dots represent small coastal watersheds 
(n = 2,695), and red dots represent the 10 continental watersheds.
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hydrological connections to stream networks play an outsized role in the transfer of DOC between terrestrial and 
aquatic ecosystems (D’Amore et al., 2010; Fellman et al., 2009) similar to other temperate ecosystems (Creed 
et al., 2003; Inamdar & Mitchell, 2006; Laudon et al., 2004; Wei et al., 2021).

The inclusion of Eref in the DOC yield model highlights the role of excess moisture as a driver of watershed DOC 
export. Reference evapotranspiration decreases with latitude across the NPCTR, while mean annual precipitation 
(MAP) increases across the same gradient (Giesbrecht et al., 2022; Shanley et al., 2015) meaning that excess 
moisture (MAP-Eref) increases moving northward in the NPCTR. Regionally, this northward increase in excess 
moisture leads to lower temperatures, slower decomposition, and the buildup of SOM (McNicol et al., 2019). 
Excess moisture also increases specific discharge, which ranges from ∼1 to 7 m yr −1 in the perhumid NPCTR 
(Giesbrecht et al., 2022). This elevated freshwater flux amplifies the positive relationship between soil C stocks 
and riverine DOC export (Aitkenhead & McDowell, 2000; Tank et al., 2018) within the NPCTR. Volume loss 
from the more than 20,000 km 2 of glacier ice in the northern portion of the NPCTR also contributes substantially 
to streamflow (Neal et al., 2010), and glacier runoff in this region is projected to increase in coming decades 
(Bliss et al., 2014). Thus heavily glacierized watersheds will continue to contribute substantially to regional DOC 
fluxes despite having small terrestrial C stocks and correspondingly low riverine DOC concentrations (Hood 
et al., 2009).

Within the NPCTR, the highest watershed DOC yields occur along the outer coast between northern Vancou-
ver Island in Canada and the southern Alexander Archipelago in southeast Alaska (Figure 1b). The latitudinal 
temperature gradient across our study region appears to play an important role in the storage and release of soil C 
to streams. The most dense stores of soil OC (>500 Mg C ha −1) occur in the Alexander Archipelago of southeast 
Alaska (McNicol et al., 2019). However, the largest watershed DOC yields occur further south consistent with the 
idea that temperature is an important control on DOC production within the soil profile (Christ & David, 1996; 
D’Amore et al., 2010; Ziegler et al., 2017). In addition, the transition from the perhumid rainforest to the seasonal 
rainforest north of Vancouver Island occurs coincident with the peak in watershed DOC yields suggesting that 
episodic drying and rewetting of soils may also facilitate DOC production and increase lateral DOC export at 
the watershed scale (Tiwari et  al.,  2022; Tunaley et  al.,  2016). In the southern NPCTR, south of Vancouver 
Island, watershed DOC yields are limited by relatively lower soil C stocks (Sun et al., 2004) and catchment water 
yields compared to the northern and central NPCTR. In this context, the central NPCTR is a “sweet spot” for 
land-to-ocean DOC transport as a result of positive interactions between key environmental variables such as 
temperature, evapotranspiration, precipitation, and soil OC that control riverine DOC export.

The highest DOC yields we modeled occurred in the smallest watersheds in our study domain (largely <50 km 2). 
This is consistent with the idea the large OC stocks in upland and particularly wetland soils within small water-
sheds in the NPCTR have a larger proportional influence (compared to larger watersheds) on streamwater DOC 
concentrations due to their consistent hydrological connectivity to the stream network (Covino, 2017) and short 
water residence times, particularly during storm events, which minimize instream processing and uptake of 
DOC (Raymond et al., 2016). The magnitude of watershed DOC fluxes from NPCTR modeled here and docu-
mented previously (D’Amore et al., 2015; Edwards et al., 2021; Oliver et al., 2017) further highlights the impor-
tance of accounting for small, wetland-rich, near-coastal watersheds in regional riverine DOC flux calculations 
(Williamson et al., 2021).

Projected future increases in precipitation and temperature across the central and northern NPCTR (Lader 
et al., 2020; Shanley et al., 2015) can be expected to increase rates of soil carbon export as DOC from coastal 
watersheds. Within individual watersheds, streamwater DOC concentrations across the region increase sharply 
with discharge (D’Amore et al., 2010; Fellman et al., 2020; Hood et al., 2020) indicating that watershed DOC 
export is broadly transport (water) limited and will increase with precipitation. The frequency of landfalling 
atmospheric river precipitation events is projected to increase substantially (50%–600%) in the NPCTR in coming 
decades (Gao et al., 2015), and these extreme high flow events can be expected to strongly enhance DOC export 
from NPCTR watersheds (Raymond & Saiers, 2010; Yoon & Raymond, 2012).

3.4. Fate of Riverine DOC in NPCTR Marine Ecosystems

The land-to-ocean DOC fluxes we document may serve as an important source of C and energy for near-shore 
ecosystems. Along the coastline of the perhumid NPCTR, the small coastal watersheds with high DOC yields 
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drain largely into sheltered inside waters and fjords. As a result, the residence time and potential for biological 
processing of DOC in estuarine ecosystems adjacent to the NPCTR is substantially higher compared to coastlines 
where runoff from rivers enters the open ocean and is rapidly transported offshore (Edwards et al., 2021). River-
ine DOC in the NPCTR has been shown to readily metabolized by marine microbes (Fellman et al., 2010) and 
serves as a primary source of organic matter in near-shore ecosystems (St. Pierre et al., 2022). Moreover, at upper 
trophic levels terrestrial OC has been shown to account for a substantial proportion (12%–50%) of the biomass 
C of copepods, birds, and fish in CTR fjord ecosystems in Chile and Alaska (Arimitsu et  al.,  2018; Vargas 
et al., 2011), however it is unclear what proportion of this C enters marine food webs as DOC compared to POC.

Climate change may alter the flow of OC across the land-ocean interface in the NPCTR. Glacier lake outburst 
floods (Harrison et al., 2018) and landslides associated with both atmospheric rivers (Darrow et al., 2022) and 
glacier recession are projected to increase in frequency (Holm et al., 2004). These events deliver large volumes of 
sediment via rivers to the coast, where freshwater plumes can extend more than 50 km down fjord ecosystems and 
impact coastal C cycling and marine food webs (Geertsema et al., 2022; Meerhoff et al., 2019). Perturbations to 
riverine sediment transport driven by extreme events will also affect the form of riverine OC. Currently, DOC is 
the dominant vector of land-to-ocean OC transport in the NPCTR, accounting for more than 80% of OC export in 
forested watersheds and up to 50% of OC export in heavily glacierized watersheds (Hood et al., 2020). However, 
during extreme high flow events, fluxes of POC increase far more rapidly than those for DOC due to the mobi-
lization of sediment from terrestrial and aquatic ecosystems (Dhillon & Inamdar, 2014). Thus, an increase in the 
incidence of glacier lake outburst floods, extreme precipitation events, and landslides within the NPCTR will 
amplify the role of POC as a vector for the transfer of OC to near-shore marine ecosystems.

4. Conclusions
We present the first unified estimate for the flux of riverine DOC to the NE Pacific and show that the NPCTR drain-
age basin is a global hotspot of land-to-ocean OC transport, representing ∼10% of the total DOC exported to the 
Pacific Ocean. Our model results suggest that majority of this DOC flux originates from small, coastal watersheds, 
with the highest watershed yields occurring on the outer coast in central British Columbia. Watershed fluxes of 
POC and inorganic C remain unquantified, however, they may contribute an additional 50% to the regional riverine 
carbon flux (Stackpoole, Stets, et al., 2017). The large land-to-ocean OC fluxes we quantify will facilitate efforts to 
model heterotrophic production in near-shore marine ecosystems in the Gulf of Alaska as well as contribute to our 
understanding of whether terrestrial ecosystems within the NPCTR function as a C sink or source at regional scales.

Data Availability Statement
Site locations, DOC data, discharge data, and modeled DOC yields used in this paper are available through the 
Environmental Data Initiative (https://doi.org/10.6073/pasta/288f23f208bd0188ed69649624d0553c).
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